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Abstract 

The response variable that represents the number of successes in a series of trials is too complex for classical linear 

regression to handle. On the other hand, binomial regression is seen to be more suitable, especially when dealing with 

bioassay data. In the context of the Generalised Linear Model (GLM), binomial regression is examined using certain link 

functions. The link functions logit, probit, complementary log-log (cloglog), Laplace, and Cauchy are frequently used for 

binomial regressions. While clog log, Laplace, and Cauchy are asymmetrical link functions, logit and probit are 

symmetrical. The study thereby aims to evaluate the performance of these link functions according to the Bayesian 

Information Criterion (BIC) and Akaike Information Criterion (AIC) indices. The study sheds light on how well these link 

functions work in the field of bioassays for modelling reactions with a binary result by expanding the analysis to the 

particular application of bioassay data. Additionally, the study incorporates the dose-response model that is frequently used 

in bioassay investigations. This approach examines the link between administered dosages and observed reactions during a 

set time period by exposing various groups to varying quantities of toxins or drugs. 
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I. INTRODUCTION 

 

Modelling the relationship between a single 

response variable and several explanatory factors using 

linear models is known as classical linear regression [16, 

17]. However, standard linear regression is insufficient 

when the response variable is the number of successes in 

repeated trials of a binomial experiment (a binomial 

random variable) [18, 19]. For the response variable with 

a binomial distribution, binomial regression is the proper 

regression model, and the binomial random variable has a 

binomial distribution [20, 21]. These models fall within 

the Generalised Linear Models (GLM) category. To 

determine the relationship between the explanatory 

variables and the response variable's expected value, the 

GLM framework uses a link function [1, 22, and 23]. 

 

In binomial regression, success is linked to 

explanatory factors but not explicitly predicted as a linear 

matrix of these variables (covariates) [24, 25]. Rather, 

binomial regression predicts the likelihood of success by 

using the inverse of a specified link function on a linear 

combination of variables [26, 27].Any monotonically 

rising function mapping values from the range (−∞, ∞) to 

(0, 1) can be the selected inverse link function [28]. In 

practice, the cumulative distribution functions (cdf) of 

known random distributions are frequently used to 

generate this inverse link function [29, 30]. For example, 

the logistic cdf is equivalent to the logit link function, 

while the normal distribution's cumulative distribution 

function is the source of the probit link function. 

 

The logit link function is one of the link functions 

that are commonly used in binomial regression models. It 

is favoured because it easily interprets regression 

coefficients [31]. The logit model has a closed form and a 

linear equation for the natural or canonical parameter of 

the underlying exponential family [32]. Even while it 

makes odds ratios easier to understand, the logit link 

function does not guarantee the best fit for every 
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binomial regression model [2].The cloglog connection is 

asymmetric in these three link functions, but the logit and 

probit links are symmetric. The constraints of symmetric 

link functions have been investigated in several works 

[33]. Symmetric link functions might not be appropriate 

when the binary or binomial response's probability 

converges to 0 at a rate different than its convergence to 1 

(for covariates) [3]. 

 

Therefore, in binomial regression, they might not 

always produce the best fit for a particular dataset. 

Sometimes asymmetric (or skewed) links are considered 

to be better options. According to Chen et al. [3], an 

asymmetric link function is preferred over a symmetric 

one when working with data that is considerably 

unbalanced (where the number of 1s and 0s changes 

significantly). Misjudging the link function can lead to 

significant bias and a higher mean square error in 

estimations for regression parameters and success 

probability, according to Czado and Santner [4]. 

Additionally, Collet [5] showed that for modelling a 

certain binary response dataset, an asymmetric link 

function could be more appropriate than a symmetric one. 

 

 

 
Fig 1 Cumulative Distribution Function Corresponding to the Logit, Probit, Cloglog, Laplace and Cauchy Link Functions. 

 

The symmetric connections of logit and probit, the 

asymmetric links of cloglog, Laplace’s asymmetric link, 

and Cauchy’s asymmetric link are the three link functions 

represented graphically by the cumulative distribution 

function in Figure 1. 

 

The solid red line shows the logistic distribution’s 

cumulative distribution function (cdf), which corresponds 

to the logit link. The cdf of the standard normal 

distribution, connected to the probit connection, is 

represented by the dashed blue line. The cdf of the 

Gumbel distribution, connected to the cloglog 

connection, is also shown by the dotted green line. 

Additionally, the dotted orange line shows the cdf of the 

Cauchy distribution, which is connected to the Cauchy 

link, and the dashed purple line shows the cdf of the 

Laplace distribution, which is connected to the Laplace 

link function.Curves flowing through the point (0, 0.5) 

symmetrically in reverse show that the logit and probit 

link functions are symmetric, convergent to 0 at the same 

rate as they approach 1. The cloglog, Laplace, and 

Cauchy link functions, on the other hand, exhibit 

asymmetric curves and approach 1 faster than 0. The 

interpretation and precision of bioassay data can be 

greatly impacted by the link function selection, which 

may influence toxicity evaluations and drug development 

choices. 

 

II. METHODS 
 

We start by creating generic notation. Let Z be an 

independent dichotomous binary random variable from a 

Bernoulli experiment with 

                              (1) 

 

If Zj is distributed as a Bernoulli with a chance of 

success P(Zj = 1) = πj and a probability of failure P(Zj = 

0) = 1 − πj, and there are n independent binary random 

variables Z1,...,Zn, then we have 

 

                                                                   (2) 

 

for j = 1,...,n. which is a number of successes from n 

repeated trials, and Y is distributed as a binomial with Y 

∼ Binomial(n,π). 

 

 Let Pi = 
𝑌𝑖

𝑛𝑖
 for i = 1,...,m be a proportion of 

successes from m independent binomial obser-vations, 

with E(Yi) = niπi and E(Pi) = πi. 

 

 Moreover, we consider xi to be p-dimensional 

covariate vector associated with Yi and β to be p-

dimensional regression coeficients vector. Binomial 

regression models assume that 

 

πi = g(xi
T β),                         (3) 

 

fori = 1,...,m.  



108 

Where g(.) represents specific known cumulative 

distribution functions (cdf), the structure of the model in 

equation (3) can be transformed into 

 

g−1(πi) = xi
T β                                                            (4) 

 

fori = 1,...,m.  

 

The inverse of the function g−1(•) is known as the 

link function. For example, the logit link function is 

produced if g(•) is the logistic cumulative distribution 

function (CDF). Likewise, the cloglog link is generated 

using the Gumbel CDF, and the probit link is derived 

when g(•) is the standard normal CDF. For more 

information, see Agresti [6] and McCullagh and Nelder 

[1]. 

 

Where Φ represents the cumulative distribution 

function (CDF) of a standard normal distribution, i.e., Φ 

is the CDF of Normal (0,1). 

 

 

 
Fig 2 Link Functions with Corresponding Regression and Tolerance Distribution. 

 

                              (5) 

 

The Bayesian Information Criterion (BIC) and the 

Akaike Information Criterion (AIC) are used to assess 

models with three distinct link functions. The AIC is 

calculated by subtracting twice the number of parameters 

and twice the maximised log-likelihood [7]. The 

dispersion for binomial families is fixed at one, and the 

number of parameters is equal to the number of 

coefficients. Schwarz [8] introduced the BIC, often called 

the Schwarz Information Criterion (SIC).The likelihood 

function is used to calculate both AIC and BIC. The best 

model is the one with the lowest AIC and BIC [34]. 

When comparing non-nested models, such as those with 

various link functions, AIC and BIC are especially 

helpful since they strike a compromise between model fit 

and complexity. 

 

AIC = 2k − 2ln(L)                        (6) 

 

BIC = ln(n)k − 2ln(L)                      (7) 

 

where L is the model's maximised likelihood 

function value, n is the number of observations or sample 

size, and k is the number of estimated parameters in the 

model. 

 

 

 

 

 

III. DISCUSSION 

 

To make sure the chosen model fits well, we do a 

simulation study using a binomial response. The 

following approach is used to run the simulation: 

 

 Step 1: Choose two explanatory variable binomial 

regression models and establish a vector of regression 

coefficients β = (β0, β1, β2) = (−3,1,−1). 

 Step 2: Create xi = (1, xi1, xi2) T after generating xi1 

∼Normal (0, 1) and xi2 ∼Normal (0, 1). 

 Step 3: Use a link function to calculate πi so that πi = 

g (xiT β). 

 Step 4: Generate ni∼Poisson (λ) with λ = 200, and Yi 

∼Binomial (ni, πi), representing the binomial 

distribution with πi as the probability of success, and 

ni as the sample size for the repeated Bernoulli trials. 

 

Two cases—one symmetric and the other 

asymmetric—were investigated using two simulations. 

The logit tolerance model is used to calculate the 

likelihood of success πi in Simulation I (assuming 

symmetry) (see Table 1). The cloglog tolerance model is 

used in Simulation II to calculate the probability of 

success, πi, given the asymmetry assumption. 

 

We create 1000 datasets for every simulation. We 

create m = 100 binomial response variables in each 

dataset, represented by Yi,j, where i = 1,...,100 and Yi,j∼ 

Binomial(ni,πi). To find the best-performing model in 

terms of AIC and BIC, we then fit the logit, probit, and 

cloglog models for each simulated dataset, respectively. 
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Table 1 Model Comparison: Average AIC and BIC for Different Link Functions in Simulations I and II 

 
 

A comparison of the models using AIC and BIC for 

each fitted link function in the two simulations is shown 

in Tables 1 and 2. The results in Table 1 show that the 

logit model has the lowest average AIC and BIC when 

the real link is the logit (which corresponds to Simulation 

I). Conversely, the cloglog model shows lower averages 

of AIC and BIC in Simulation II, when the real link is 

cloglog. 

 

Table 2 Percentage of the Lowest AIC and BIC Associated with the Link Functions 

 
 

The results in Table 2 support this observation, 

showing that when the real link is logit, the logit model 

fits the data better in 89.7% of 1000 datasets. Similarly, 

when the genuine link is cloglog, the cloglog model 

performs exceptionally well, with a success rate of 

94.4%. The simulation study's empirical data emphasises 

how crucial it is to choose the right link function because 

a poor decision might seriously impair the model's fit. 

 

 Another Logistic Model Example  
 

 Cauchy Link Function Model 

 

Table 3 Coefficients of the Cauchy Link Function Model 

 
 

Table 4 Model Fit Metrics of the Cauchy Link Function Model 
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 Explanation 
 The results from the GLM using the Cauchy link 

function are summarized in the tables above. 

 

 Coefficients Table: The coefficients of the Cauchy 

link function model show the estimated effect of each 

predictor (x1 and x2) on the response variable y. 

 Model Metrics Table: The model fit metrics for the 

Cauchy link function model include degrees of 

freedom, null deviance, residual deviance, and AIC. 

These measures aid in evaluating the model's 

complexity and goodness of fit. 

  

The Cauchy link function model exhibits a residual 

deviance of 36.7 and an AIC of 42.7, indicating its fit to 

the data and model complexity. Further analysis and 

comparison with alternative models may provide 

additional insights into the suitability of this model for 

the given data. 

 

Table 5 Coefficients of the Laplace Link Function Model 

 
 

The data generation process in this analysis involves 

a sample size of 50 observations. It includes an intercept 

term and two random variables (x1 and x2), each 

generated from a standard normal distribution (N(0,1)).  

 

This defines custom link functions based on the 

Cauchy and Laplace distributions, in addition to using 

standard link functions like probit and logit. These 

custom links offer alternative modeling approaches 

within the generalized linear model (GLM) framework. 

 

 Laplace Link Function Model 

 

Table 6 Coefficients of the Laplace Link Function Model 

 
 

Table 7 Model Fit Metrics of the Laplace Link Function Model 

 
  

 Explanation 

 The results from the GLM using the Laplace link 

function are summarized in the tables above. 

 

 Coefficients Table:  

The coefficients of the Laplace link function model 

show the estimated effect of each predictor (x1 and x2) 

on the response variable. 

 

 Model Metrics Table:  

The model fit metrics for the Laplace link function 

model include degrees of freedom, null deviance, residual 

deviance, and AIC. These metrics help assess the 

goodness of fit and complexity of the model. 

 

The Laplace link function model exhibits a residual 

deviance of 35.5 and an AIC of 41.5, indicating its fit to 

the data and model complexity. 

 

 Comparison and Conclusion 
 Comparing the two models based on the AIC 

(Akaike Information Criterion) and residual deviance: 
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 AIC:  

Lower values indicate a better balance between 

model fit and complexity. In this case, the Laplace link 

function model has a lower AIC (37.97) compared to the 

Cauchy link function model (38.74), suggesting that the 

Laplace model may be preferred in terms of model fit and 

complexity. 

 

 

 

 Residual Deviance:  

Lower deviance values indicate a better fit of the 

model to the data. The Laplace link function model also 

has a slightly lower residual deviance (31.97) compared 

to the Cauchy link function model (32.74), further 

supporting its better fit to the data.  

 

Based on these metrics, the Laplace link function 

model appears to be the better option among the two 

custom link functions considered in this analysis. 

 

 
Fig 3 AIC and Deviance Comparison1to the logit, Probit, Cloglog, Laplace and Cauchy link Functions. 

 

IV. APPLICATIONS TO BIOASSAY DATA 

 

The drug development process is a complex and 

resource-intensive journey, often requiring precise 

methodologies for analyzing experimental data. Classical 

linear regression, traditionally employed for modeling 

continuous outcomes, faces limitations when applied to 

response variables representing the number of successes 

in a series of experiments [36]. In response to this 

challenge, binomial regression emerges as a more 

appropriate approach, particularly within the context of 

bioassay data. 

 

Bioassay experiments play a pivotal role in drug 

development, involving the exposure of multiple groups 

to varying levels of toxins or drugs. The assessment of 

responses within a fixed period forms the basis for 

understanding the effectiveness and toxicity of substances 

[37]. Classical linear regression’s inadequacy in handling 

such discrete and binary outcomes necessitates the 

exploration of alternative statistical approaches. 

 

The primary objective is to unravel the intricate 

relationship between dose (x) and the probability of 
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success (π). It is essential to employ a regression model, 

g(π) = β1 + β2x, to characterize this relationship. The 

model aims to provide a quantitative framework for 

describing the probability of success as a function of the 

administered dose. This study holds significance in fields 

such as toxicology and pharmacology, where 

understanding dose-response relationships is crucial. By 

delving into the historical context and applying modern 

regression models, we anticipate contributing valuable 

insights that can enhance our comprehension of quantal 

responses in bioassay data. 

 

 Anticipated results from this research have the 

potential to advance our understanding of the 

complexities between dose levels and the likelihood of 

success in bioassay outcomes. This project serves as a 

valuable exploration of statistical modeling in the context 

of historical and contemporary bioassay data. 

 

For bioassay data, the probit model is one of the 

earliest models utilised. Many branches of the biological 

and social sciences employ probit models, which have 

natural interpretations. For instance, x = µ is known as 

the median lethal dosage, or LD(50), as it is the amount 

that is predicted to kill half of the animals. 

 

 Beetle Mortality Rate 
In entomological and toxicological investigations, 

the quantity of insecticide required to eliminate a 

specified proportion of the intended subjects (such as the 

median lethal dose, LD50) typically serves as a measure 

of the insecticide’s effectiveness. The probit model, 

initially formulated by Bliss and refined by Finney, 

stands as a frequently employed technique for 

determining LD50 values in insect populations. 

 

Table 8 Beetle Mortality Data. 

 
 

The number of dead beetles following five hours of 

exposure to gaseous carbon disulphide at different 

concentrations is displayed in Table 8 (data from Bliss, 

1935). These findings have important biological 

implications. The superior fit of the clog log model 

suggests that the mortality rate increases more rapidly at 

higher doses, which aligns with the known toxicological 

profile of carbon disulphide. 

 

A comparison of observed beetle mortality numbers 

with fitted values from several dose-response models is 

also included in the analysis, along with graphs showing 

the Proportion of Success (prop = ys/yf) plotted against 

dosage (x). Deviance statistics are also provided to 

evaluate the performance of each model. 

 

The analysis aimed to identify the best link function 

by comparing models using the AkaikeInformation 

Criterion (AIC) and Deviance (D) values. Among the 
tested models, the ExtremeValue/Cloglog link function 

exhibited the lowest Deviance (D = 3.45) and AIC (AIC 

= 33.64), indicating superior model fit and performance 

compared to Logit (D = 11.23, AIC = 41.43) and Probit 

(D = 10.12, AIC = 40.32) link functions. 

 

Based on these metrics, we conclude that the 

ExtremeValue/Cloglog link function is the most suitable 

for modeling the dose-response relationship in the 

context of beetle mortality after exposure to gaseous 

carbon disulphide. 

 

The superior performance of asymmetric link 

functions in this beetle mortality study reveals that 

researchers should consider these models when analyzing 

insecticide efficacy. This could lead to more accurate 

estimations of lethal doses, potentially reducing the 

amount of pesticide needed for effective pest control. 
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(A) Proportion of Success (prop = ys/yf) plot-ted against dose (x). 

 

 
(B) Comparison of observed beetle mortality numbers with fitted values from different dose-response models. 

 

 Another Example 
The observed data from experiments involving the 

effects of insecticide on adult flour beetles, including the 

analysis of responses over time, sex differences, and the 

application of mechanistic models to quantify the 

observed differences. 

 

 The data is sourced from Hewlett’s work in 1974. It 

presents the daily mortality numbers of adult flour beetles 

(Triboliumcastaneum) after exposure to pyrethrum, an 

insecticide derived from plants. The pyrethrum was 

mixed with oil and applied at specified rates over small 

experimental areas, where the beetles were confined yet 

had freedom of movement. Food was also provided to 

minimize natural mortality. 

 

 Table Analysis: 

 

 Columns: Doses of a substance (0.20, 0.32, 0.50, 0.80 

mg/cm²) 

 Rows: Time in days (1 to 13) 
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Table 9 Observed Data for Adult Flour Beetles 

 
 

 Data Points: Number of mortalities for male (M) and 

female (F) beetles 

 Total Mortalities: Summed for each dose and gender 

Observations: 

 Mortality increases over time for both genders. 

 Higher doses generally result in more mortalities. 

 Female beetles show higher mortality than males at 

lower doses (0.20, 0.32 mg/cm²). 

 At higher doses (0.50, 0.80 mg/cm²), mortalities are 

more similar between genders. Potential Insights: 

 Gender may influence susceptibility at lower doses. 

 Time and dose are critical factors in mortality rates. 

 The data could inform dose-response models and 

toxicity thresholds. 

 

 Limitation 

While this study provides valuable insights, it is 

important to note its limitations. The simulations, while 

extensive, may not capture all possible real-world 

scenarios. Additionally, the bioassay data used, while 

representative, may not encompass the full range of 

complexities encountered in all types of bioassay studies. 

Future research could address these limitations by 

expanding the range of simulated scenarios and applying 

these methods to a wider variety of bioassay datasets. 

 

 
Fig 5 Time-Response Relationship of Adult Flour Beetles. Observed Data for Male and Female Flour Beetles at Different 

Doses. Data Source: Pack and Morgan. 
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V. CONCLUSION 

 

 Evaluating the binomial regression model requires 

careful consideration of the selected link functions. The 

comparison of different link functions in symmetric and 

asymmetric scenarios is the goal of this research. As 

illustrated in earlier simulations, it was evident that the 

logit link function exhibits superior performance in fitting 

symmetric scenarios, while the cloglog link function 

excels in asymmetric situations. 

 

The AIC and BIC values offer valuable insights into 

the model’s goodness of fit, and the per-centage metrics 

indicate the frequency with which each link function 

demonstrates optimal per-formance in terms of AIC and 

BIC across multiple simulations. Consequently, it is 

concluded that the meticulous selection of a link function 

significantly contributes to achieving an enhanced fit for 

the binomial regression model. 
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