
International Journal of Scientific Research and Modern Technology (IJSRMT) ijsrmt.com

Volume 4, Issue 1, 2025

DOI: https://doi.org/10.5281/zenodo.14960117

Hossain, M. M., Hasnat, M. A., & Islam, M. S. (2025). Enhancing Web Security: A Comprehensive Approach to Detect and

Prevent SQL Injection Attacks through Innovative Query Comparison and Encryption Algorithms.

International Journal of Scientific Research and Modern Technology, 4(1), 123–133.

https://doi.org/10.5281/zenodo.14960117

123

Enhancing Web Security: A Comprehensive

Approach to Detect and Prevent SQL

Injection Attacks through Innovative Query

Comparison and Encryption Algorithms

Md. Monowar Hossain1; Md. Abul Hasnat2; Md. Shahidul Islam3

1 Hamdard University Bangladesh

Publication Date: 2025/02/25

Abstract
In the modern world, web apps are now essential to meeting the daily needs of every company. Databases are used by these

applications to store, organize, retrieve, and process data and information. The bulk of its attacks are therefore focused on

databases. The frequency of website attacks and the compromise of people's private data are rapidly rising. Since the advent

of social networking and e-commerce, web security has gained popularity due to the prevalence of assaults like spam and

phishing. For this reason, web applications must be securely designed to prevent unauthorized access to customer databases,

bank accounts and transactions are not intercepted, and information is not destroyed or stolen. This paper presents a novel

algorithm for website attacks that also stops hackers from gaining early access to databases through the web application

without actually accessing the databases. The suggested algorithm uses prevention techniques, blocks the hacker's address,

rejects the hacker's request when the query is executed, and updates security often to prevent unauthorized access to the web

application. To ensure that everything is adequately safeguarded, this algorithm is also made to operate in many layers,

working at the URL and web application levels. Research was conducted to enhance web software security, and a defense

system that guards against SQL Injection was created. The developed software creates a protection mechanism using PHP,

JavaScript, and regular expression, a formal language theory. This solution gives users a way to secure their web applications

from potential attacks by defending against SQL Injection vulnerabilities in web resources.

Keyword: Web Application, SQL, PHP, SQL injection Attack, Prevention, Web Security.

I. INTRODUCTION

Web applications face growing threats, and it's

important to understand common attacks like phishing and

service denial. Phishing and email spamming are simple

tricks used in social engineering. With the fast growth of

Web 2.0 tech, network applications are now essential in

daily lives. However, this progress brings more challenges

to web applications. It's important to remain informed

about these risks. There are many ways for constructing

and executing SQL statements using different web

programming languages (such as PHP, java)[1].

Developers often create SQL statements by combining

strings provided by users on a web page. Because there are

many different SQL languages and encoding methods,

there's a risk of attacks through these statements. One

serious threat is SQL Injection, a kind of code-injection

attack brought on by insufficient user input validation. One

of the most critical vulnerability in web security is SQL

Injection (SQLIA). It happens when attackers sneak in

harmful code fragments through input fields on a website.

Security Mechanism like Firewall, Cryptography and

Traditional Intrusion Detection Systems can be bypass

using SQL Injection[10]. This can make the server execute

unauthorized queries, leading to data exposure and

damage to the database. it's surprising that many people,

even those who are tech-savvy, struggle to identify

phishing attacks and email spam. This lack of awareness is

a concern because most confidential transactions occur on

the web. To address these issues, it's crucial for everyone

to have a basic understanding of web security. Despite

efforts to find solutions, the current techniques aren't very

effective in preventing SQL Injection attacks. Since

SQLIA is application-level security vulnerability, it's

essential to strengthen the validation of user input to avoid

such risks. Awareness and education about web security

https://www.ijsrmt.com/
https://doi.org/10.5281/zenodo.14960117
https://doi.org/10.5281/zenodo.14960117

124

are key to protecting sensitive information online. SQL

Injection gives access the attacker to obtain the username,

password and other privacy data of from website, which

posing a major risk to the data security [2-4]. The main

goals of using SQL Injection attack are to gain illegal

access to a database, extracting Information from the

database, modifying the existing database. SQL injection

attacks are the most concerning element of web

applications, and their prevalence is expected to increase

if the trend of providing web-based services continues[10].

This paper will concentrate on protecting the web and

data before the hacker accesses the databases. So that,

don't provide access the hacker to the databases before

ensuring the integrity of the written query and made sure

there are no commands that allow the hacker to manipulate

sensitive data. Additionally the paper present different

types of SQLI attack and prevention techniques against all

types of SQL injection attacks and required implemented.

II. SQL INJECTION ATTACK

SQL injection is a technique used to retrieving or

destroying data from a database without authorization. It

is considered one of the top web application security risks.

Where data fuels the core functionalities of web

applications, ensuring the security of databases is of

paramount importance. Web-based SQL injection occurs

when an attacker manipulates input fields on a web

application to inject malicious SQL code, potentially

compromising the underlying database. Sometime face we

Unauthorized access, Data manipulation, Information

leakage, System compromise. There have been major

repercussions from the exploitation of application-level

vulnerabilities: hackers have deceived e-commerce sites

into sending items for free, stolen usernames and

passwords, and the disclosure of private data (including

addresses and credit card details) [3]. Inadequate

sanitization of user input can lead to a number of attacks

that exploit web-based apps to undermine back-end

database security [3]. The query statement is often

composed of a set of words and symbols that enable it to

access the web and databases. While visiting the login

screen, it often compares the values stored in the database

tables with a username and password. However, by using

the query, no password is required. Figure 1 shows a SQL

injection attack login for a website admin.

Fig 1 Attacker Login Admin Site Page

' UNION SELECT 1,2 ,3,4#

This attack called union-based SQLi. In-band SQLi,

Inferential SQLi and Out-of-band SQLi are the three main

categories of SQL Injection. Blind-Boolean-based SQLi

and Blind-time-based SQLi are the two varieties of

inferential SQL Injection. Since it relies on features that

are enabled on the database server that the web application

is using, out-of-band SQL injection is not very prevalent.
Normally classic SQL injection bypass involves exploiting

vulnerabilities in the input validation process to inject

arbitrary SQL code. a login form on a website where the

username and password are checked against a database:

SELECT * FROM users WHERE username = ' ' AND

password = ' ';

If the input is not properly sanitized, an attacker may

input something like:

Username: admin' OR '1'='1, password: anything or

blank. For example, figure 2 is that way hacker attack in

website.

125

Fig 2 Classic SQL Injection Bypass Flowchart

Figure 1 actually this (figure 3) way to attack website, hacker follow this figure 3 instruction and unauthorized access in

web site.

Fig 3 Union Based SQL Injection Flowchart

START

SUBMIT

Injection

Bypass

Successful?

Access Granted

Access Denied

Enter Username and Password

Check for Injection Bypass

admin’OR ‘1’=’1

a

YES
NO

END

START
Is the website vulnerable to SQL

injection?

Is the SQL injection technique

union-based?

Can you identify the number

of columns in the database?

Website is not vulnerable to

Union-Based SQLi

Craft a UNION-based SQLi

payload

Try different techniques for

identifying columns

Exploit Union-Based

SQLi

Try different number of

columns

Execute the payload and

observe results

Are additional columns retrieved

successfully?

YES

YES

YES

YES NO

NO

NO

END

126

In a Boolean-based attack, the attacker typically exploits the application by injecting SQL code that evaluates to either

true or false, allowing them to deduce information about the database.

Fig 4 Boolean-based SQL Injection Flowchart

Additionally, there are kinds of SQLIAs including

Tautologies, Piggy backed queries attack, Union attack,

Illegal incorrect queries, Inference based attack, Alternate

encodings and Stored procedures. Table 1 summarizes

various types of SQLIAs, type of categories (SQL

Manipulation, Code Injection, Function Call Injection, and

Buffer Overflow), description and their corresponding

examples. These various types of SQLIAs target different

aspects of SQL query processing, ranging from

manipulating logic to exploiting coding vulnerabilities. To

reduce the danger of SQL Injection, developers and

security experts must be aware of these attack vectors and

use parameterized queries and strong input validation.

Potential vulnerabilities can be found and fixed with the
use of routine security audits and monitoring before they

are exploited by malicious actors.

As a result, SQL injection was necessary to prevent

these kind attacks. Additionally, it protects against harmful

attacks that could harm web applications of organizations

both physically and morally.

Exploit Vulnerability

Submit Input

Attempt another

method

Access Data

Start

Try another

method

SQL

Injection

Success?

YES

Enter input

Input Error

Error Based SQL injection

No error messages

Try different method

Retry another method

 NO

127

Table 1 Types of SQLIA

S.No Type of

Attack

Category Working Method Example

1 Tautologies SQL

manipulation

Tautology injects Malicious Code into the

Conditional Statements so that they always

evaluates to True.

select * from users where name=

‘admin’ OR ‘1’ = ‘1’

2 Piggy

backed

queries

attack

Code

injection

An independent query is injected into the

legitimate query in a piggy-backed queries

attack, and it is executed after the initial

query has already been run.

select * from users where username

= “; INSERT INTO users

VALUES(‘anything’,’1536’)--

3 Union

query

SQL

manipulation

Code

injection

By joining two independent queries a

UNION query allows an attacker to retrieve

data from a different table.

select * from users where username

= “UNION SELECT SUM

(USERNAME) from users BY user

id having 1 = ‘1’ and password =

‘anything’.

4 Illegal

incorrect

queries

SQL

manipulation

When an attacker injects an improper query

into a web application, they are able to

obtain information about the database

structure. This results in an error that

contains crucial database information.

select * from users

where username = Having 1 = ‘1’

and password = ‘anything’

5 Inference

based

attack

Code

injection

Buffer

overflow

This kind of attack involves asking the

server certain true-false queries in order to

deduce important information.

select * from products where

category = ‘books’ OR ‘1’ = ‘1’;

III. RELATED WORK

SQL Injection and Cross-Site Scripting Attacks are

two risks to Web Application Security. SQL Injection is

one of the most often exploited vulnerabilities. This form

of database attack has destroyed companies, ruined

careers, and is a constant challenge for security officers.

Data is the greatest asset that database professionals have,

and it is their duty to protect it above all else [3]. The

amount of SQL injection to which online applications are

subject has significantly and quickly expanded in recent

years. As a result, researchers were highly motivated to

defend web applications against these assaults in order to

protect databases and data. Numerous strategies to fend off

these attacks have been discovered by researchers [1]. It is

still unclear, which of these techniques and algorithms are

best suited for use in the relevant institution, which are

adequate for the task and which are ideal for safeguarding

web applications. In addition, some SQL Injection attack

protection solutions might be costly and require a plan and

budget for the infrastructure of the company to function

properly. Naturally, small and medium-sized organizations

are unable to handle these financial obligations [1].

Precisely tracking tainted data and specially checking for

dangerous content in portions of commands and output

that came from unreliable sources is the foundation of a

fully automated approach to securely hardening web

applications.

Since, there are many proposed algorithms were

designed to SQL injection and prevent SQL injection, but

they have several limitations. For example, where it did

not use all the character spacing and did not deal with the

state of the insert when adding data to the databases, only

one layer was taken into account to detect the query. Many

researchers neglected a crucial URL layer, which is a

vulnerability that hackers use to access the databases [1].

Lastly, only a few queries are examined by the majority of

the algorithms listed; they merely handle the login screen.

An algorithm was strongly encouraged to process these

parameters.

IV. METHODOLOGY

Securing websites and databases is crucial due to the

constant threat of hacker attacks. Efforts are needed to

devise effective strategies in response to the evolving

techniques employed by attackers aiming to breach

databases and access sensitive information. Understanding

attackers' methods is essential for safeguarding data.

Hackers typically seek valuable information and conduct

thorough analyses, focusing on system behavior and

vulnerabilities. An example is SQL injection, where

attackers exploit weak points after investing time and

effort in understanding system operations. Once a

vulnerability is identified, hackers can exploit it to gain

access to user permissions and subsequently acquire

sensitive data.

This paper introduces a model designed to safeguard

the initial interface from unauthorized access by hackers

and to provide security for the data stored within

databases. Refer to Figure 5 for a visual representation of

the proposed methodology.

128

Fig 5 Process Diagram

 Process Diagram for Building a Secure PHP and
MySQL Web Application:

 Website Development: Start by building the website

using PHP and MySQL as the primary technologies.

 SQL Injection Scan: Perform an initial scan for SQL

Injection vulnerabilities to identify potential

weaknesses in the application.

 Security Assessment: Examine the web application’s

overall security to find any weak points that could be

attacked.

 Vulnerability Identification: Determine which

particular application components are at risk of attack,

such as input fields that could be subject to injection

attacks.

 Prevention Techniques: To stop attacks like prepared

statements, parameterized queries and input validation.

 Input Validation: To make sure that all user input is

properly sanitized and validated.

 Use Prepared Statements and Parameterized Queries:

Employing prepared statements and utilizing

parameterized queries is vital to minimize the chances

of being hit by SQL Injection attacks.

 Consider a Web Application Firewall Use a web

application firewall as an extra security measure.

 Finalize and Test Implementation: Finalize the

implementation of security measures and thoroughly

test the application to ensure that all security features

are functioning properly.

 Regularly Review and Update User Privileges: Make

sure people have access only the resources they require

by routinely reviewing and updating their needs [20].

 Perform Security Audits: Use to find and proactively

fix any possible security flaws.

 Implement Least Privilege Principle: Grant users the

minimal amount of access necessary to carry out their

duties [12].

 Ignore User Privilege Updates: Do not ignore updates

to user privileges, ensuring that all changes are

properly reviewed and approved.

 Review Database User Account Privileges: Regularly

review the privileges assigned to database user

accounts to ensure that they are appropriate and

necessary.

 Monitor and Update Security Measures: Continuously

monitor security measures and update them as needed

to respond to new threats and vulnerabilities.

 Test Prepared Statements and Parameterized Queries:

Make sure that prepared statements and parameterized

queries are appropriately rejecting hacker requests by

testing them on a regular basis [15].

 Penetration Testing: Perform regular penetration

testing to identify any potential security weaknesses

and address them proactively.

 Intrusion Detection: Implement intrusion detection

measures to alert you of any suspicious activity on your

web application.

 By following this process diagram, you can build a

secure PHP and MySQL web application that is

resistant to attack and protects sensitive data.

In web applications, SQL Injection attacks are a

common and serious security risk. A weakly built web

application and inadequate input validation are two

advantages that hackers can use in SQL Injection attack

[2]. Data confidentiality and integrity are compromised as

a result of a successful SQLIA, which degrades the market
value of the organization. This paper presents a useful

analysis of several kinds of SQLIAs, methods and

processes. It also explores different methods of detection

and prevention.

Start

Website built with

PHP and MySQL

Assess Web App

Security

Identify

Vulnerable

Areas

yes No

Prevention Techniques

SQL Injection Scan Vulnerability Assessment

Input

Validation

yes

No

Prepared

Statements and

Parameterized
Queries

Web Application

Firewall

Perform

Security

Audits

Review

Database User

Account

Privileges

Least

Privilege

Principle

yes

No

Regularly Review and

Update User

Privileges

Finalize and Test

Implementation
Monitor and Update

Security Measures

Test Prepared

Statements and

Parameterized

execute Queries

Reject

Hacker

Request

Penetration

Testing

Ignore User

Privilege

Updates

Intrusion

Detection

Yes No

129

V. IMPLEMENTATION

The proposed algorithm can be implemented as part

of a comprehensive web security framework. It seamlessly

integrates with existing systems and requires minimal

adjustments to deploy. Its simplicity ensures that

organizations of varying sizes and technical expertise can

adopt and benefit from enhanced security measures.

 Benefits:

 Cost-Effective:

The algorithm leverages existing technologies and

focuses on simplicity, making it a cost-effective solution

for organizations with budget constraints.

 User-Friendly:
Its straightforward design facilitates easy

implementation and maintenance, reducing the need for

extensive training or specialized expertise.

 Scalable:
The algorithm can scale to accommodate the

evolving needs of growing databases and web

applications.

A web application connected to the database for

accessing data. Take a look at Figure 5 below, outlining

how prevent unwanted data insertions.

Fig 6 Use of Username and Password

Using the interface of web application, the input

fields will be filled in. When a user selects "insert data,"

the information will be saved in the MySQL database. The

database structure is illustrated in the accompanying figure

6.

 Below is the pseudo-code outlining the measures to
prevent insertion:

 The (Host, Database User, Database Password, And

Database Name) Have Been Initialized.

 //Connect Web Server to Database Using Mysql

Method.Mysqli($Host, $Dbuser, $Dbpass, $Dbname);

 The Username Is Initialized and Waits to Execute

 //The Password Is Initialized and Encrypted Using the

Md5 Method $_POST['username']);$raw_password =

md5($_POST['password']); $password =

mysqli_real_escape_string($conn, $raw_password);

 The Query Is Waiting to Be Prepared

 “Insert Into Users (Username, Password) Values

(??)”);

 The Query Is Prepared

 // Bind Parameter Is Invoked Bind_Param (‘Ss’,

$User, $Password);

 Execute (); \\Execute Method Is Run

In this case, stopping unauthorized persons from

getting into the database to sabotage or steal data has been

accomplished using a straightforward algorithm. The

process involves several stages and primarily focuses on

preventing SQL injection, a common method used by
hackers to gain access. The key strategy is to block a

typical tactic employed by malicious individuals: messing

with character spacing.

130

Table 2 Character Spacing

Character Task

-- Line Comment

“or” String

+ ,|| Concatenate

/*---*/ Many lines comment

’0:0:22’ Wait for the time delay

?php1=abc&ad=mar URL

Also, when comparing detection and prevention

methods, it becomes evident that detection focuses on

identifying security breaches and unauthorized access

after they occur, while prevention is centered around

implementing measures to stop these incidents from

happening in the first place. Detection often involves

monitoring and analyzing system logs and network

activities to catch anomalies, whereas prevention relies on

robust security protocols, encryption, access controls, and

other proactive measures to fortify the system against

potential threats. Striking a balance between effective

detection and prevention strategies is crucial for

comprehensive cybersecurity. In table 3 also compare

normal and intruders.

Table 3 Comparison between Different Detection and Prevention Methods [6]

 Normal Intruders

SQL injection query Can access rows in table Can access rows and all tables

Prepared Statement Can access one row Can access one row at a time

Stored procedures Can insert, delete, update values in the table Database admin can revolve execution

White list input validation A special query has to be passed A special query has to be passed

The number of Internet application attacks decreased

by 69% in the third quarter of 20217 compared to the third

quarter of 2016, according to Akamai. Just 9% of these

attacks were caused by XSS, compared to 85% by SQL

Injection and Local File Incorporation Attacks. According

to Verizon’s data breach study [14], web application

attacks accounted for 29.5% of breaches, whereas only

15.4 percent of recorded events involved Web Application

Assaults. SQL Injection is the most prevalent attack on the

Internet, 85% of web application attacks in Q3 2017 were

caused by this according to Research Done by US-Based

Cloud Service Provider. From November 2017 to March

2019, SQL Injection attacks accounted for 65% of web-

based attack vectors. Additionally, some websites continue

to be attacked in 2024 even if the majority of online apps

receive at least four web attack campaigns per month [9].

In a single day, 94,057 SQL injection attack requests

are sent to each website. SQL injection attacks are twice

as common in e-commerce as in other sectors, 98% of the

time, 176 days out of 180, an observed website was

attacked. On average, 94,057 equates to 26 attack requests

each minute or 1,567 SQLI attacks per hour.

Fig 7 Vulnerabilities by Type-2024 [6]

According to WordPress sites 2024 vulnerabilities by type SQL injection 2nd most widely used exploit.

131

Fig 8 Vulnerabilities by Sites-2024

This chart shows that while SQL injection is the

second most common vulnerability in WordPress sites.

which is 22% Assuming that the list provided contains

different types of web application vulnerabilities, and

create a chart focusing on SQL Injection. Here's a simple

chart illustrating SQL Injection and its related information:

Table 4 SQL Injection Vulnerabilities

Category Vulnerability Type Description

Injection SQL Injection
Unauthorized SQL queries are injected into a web application's input fields,

allowing unintended access to the database.

Techniques Error-based SQLI Exploiting SQL errors to extract information or perform unauthorized actions.

 Union-based SQLI Combining query results from multiple tables to extract sensitive data.

 Blind SQLI Inferring database content using true/false responses or time delays.

Prevention Input Validation Validating and sanitizing user inputs to prevent malicious SQL queries.

 Prepared Statements
Using parameterized queries to separate code from data, reducing the risk of

SQLI.

Least Privilege

Principle

Granting the web application the minimum database permissions necessary to

function.

Detection Automated Scanning
Using automated tools to identify SQL Injection vulnerabilities in web

applications.

 Manual Testing
Expert security testers manually attempting to exploit SQL Injection

vulnerabilities.

An evaluation of various techniques, including

AMNESIA, SQLCHECK, CANDID, Automated

approach, Tautology checker, SQLrand, SQLDOM,

CSSE, and WebSSARI, against a variety of attacks,

including tautology, logically incorrect queries, union

queries, stored procedures, piggybacked queries, inference

attacks, and alternate encodings, is provided in Table 5.

The '√' symbol indicates whether a technique can detect or

prevent the corresponding attack, while '×' denotes its

inability to do so. According to the analysis, the

WebSSARI technique emerges as the most effective,
successfully preventing all types of SQL injection attacks.

In contrast, CANDID and the tautology checker only

demonstrate prevention capabilities for one specific attack

type, namely tautology. This underscores the superiority of

the WebSSARI technique over other approaches in

thwarting a comprehensive range of SQL injection threats.

Additionally, recent studies, including Puneet's analysis of

classical and modern approaches [16], and another study

comparing various detection and prevention techniques

[17], highlight the effectiveness of SQL IDS, SQL

Checker, and SQL Prevent in detecting diverse SQL

injection attacks.

132

Table 5 Analysis of the Differences in Attack Types, Protection Strategies, and Detection

Types of Attacks → Tautology

Logically

incorrect

queries

Union

query

Stored

procedure

Piggy

backed

queries

Inference

attack

Alternate

encoding

Detection and Prevention

Techniques ↓

AMNESIA √ √ √ × √ √ √

SQLCHECK √ √ √ × √ √ √

CANDID √ × × × × × ×

Automated approach √ √ √ × √ √ ×

Tautology checker √ × × × × × ×

SQLrand √ × √ × √ √ ×

SQLDOM √ √ √ × √ √ √

CSSE √ √ √ × √ √

WebSSARI √ √ √ √ √ √ √

√ This indicator shows whether the strategy can

identify or stop the attack.

× This sign denotes if technique is unable to detect or

stop the attack.

SQLIA detection can be done by checking anomalous

SQL query structure using string matching, pattern

matching and query processing.

VI. CONCLUSIONS

Website-based SQL injection represents a persistent

threat in the realm of cybersecurity. Its existence

underscores the critical importance of strong web

application security measures. This research paper has

introduced innovative algorithms useful for addressing

and mitigate the risks associated with website-based SQL

injection. The proposed methodologies demonstrate a

robust approach to identifying and preventing SQL

injection vulnerabilities in web applications. The current

research thoroughly examines different types of SQL

Injection Attacks (SQLIA) and conducts a critical

analysis. The focus is on understanding and addressing

SQLIA through the investigation and evaluation of various

detection and prevention techniques. The research

involves a comparative analysis of different attack types

and the corresponding mitigation techniques. By

investigating the efficacy of pattern matching algorithms

like Brute-force, Rabin-Karp, Boyer-Moore, Knuth-

Morris-Pratt, and Aho-Corasick for identifying and

thwarting various assaults, the ultimate objective is to

eradicate significant SQLIA. The algorithm has been

implemented for the main login screen of the website and

other screens related to the same online application. Over

250 requests from the web and URL layers were used to

test the system. Comparing the results with SQLPMDS

and SIUQAPTT shown that the suggested technique

provided greater speed and scalability to defend against

and identify different types of attacks.

REFERENCES

[1]. E. Pollack, "Protecting against SQL injection:

Applications performance and security in microsoft

SQL server", Proc. Dyn. SQL, pp. 31-60, 2019.

[2]. A. A. Sarhan, S. A. Farhan And F. M. Al-Harby,

"Understanding and Discovering SQL Injection

Vulnerabilities", Proc. Int. Conf. Appl. Hum.

Factors Ergonom., Pp.1063-1075, 2017

[3]. A. Maraj, E. Rogova, G. Jakupi and X. Grajcevci,

"Testing Techniques and Analysis of SQL Injection

Attacks", Proc. Int. Conf. Knowl. Eng. Appl.

(ICKEA), Pp. 1-11, 2017

[4]. D. Das, U. Sharma and D. K. Bhattacharyya,

"Defeating SQL Injection Attack in Authentication

Security: An Experimental Study", Int. J. Inf.

Secur., Vol. 18, No. 1, Pp. 1-22, 2017

[5]. D. Scott and R. Sharp. Abstracting Application-

level Web Security. In Proceedings of the 11th

International Conference on the World Wide Web

(WWW 2002), pages 396–407, 2002

[6]. F. Valeur, D. Mutz, and G. Vigna. A Learning-Based

Approach to the Detection of SQL Attacks. In

Proceedings of the Conference on Detection of

Intrusions and Malware and Vulnerability

Assessment (DIMVA), Vienna, Austria, July 2005

[7]. H.-C. Huang, Z.-K. Zhang, H.-W. Cheng and S. W.

Shieh, "Web application security: Threats

countermeasures and pitfalls", Computer, vol. 50,

no. 6, pp. 81-85, 2017.

[8]. Raut, S., et al., A Review on Methods for

Prevention of SQL Injection Attack. International

Journal of Scientific Research in Science and

Technology, 2019: p. 463-470

[9]. Kini, S., et al. SQL Injection Detection and

Prevention using Aho-Corasick Pattern Matching

Algorithm. in 2022 3rd International Conference

for Emerging Technology (INCET). 2022.

[10]. Harefa, J., et al., SEA WAF: The Prevention of

SQL Injection Attacks on Web Applications.

Advances in Science, Technology and
Engineering Systems Journal, 2021. 6: p. 405-411.

[11]. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J.

Shirley, and D. Evans. Automatically Hardening

Web Applications Using Precise Tainting

133

Information. In Twentieth IFIP International

Information Security Conference (SEC 2005), May

2005

[12]. Nikita, P., Fahim, and S. Soni, SQL Injection

Attacks: Techniques and Protection

Mechanisms. International Journal on Computer

Science and Engineering, 2011. 3

[13]. Akamai, State of the Internet/Security, Q3 2017

Report

[14]. Verizon, 2017 Data breach investigations report,

10th edition.

[15]. Web Attacks and Gaming Abuse Report: Volume 5,

Issue 3

[16]. Singh JP. Analysis of SQL injection detection

techniques[Internet]. 2016 [updated 2016 Dec 15;

cited 2016 May 9]. Available from: Crossref.

[17]. Dehariya H, Shukla PK, Ahirwar M. A survey on

detection and prevention techniques of SQL

injection attacks. International Journal of Computer

Applications. 2016 Mar; 137(5):9–15. Crossref.

